将mobilenet_ssd tensorflow.pb转换为tflite的详细步骤

1.依赖工具及环境

  • 下载tensorflow-models源码

    git clone https://github.com/tensorflow/models

  • 按照提示配置环境
    注意在~/.bashrc添加上

    1
    2
    # From tensorflow/models/research/
    export PYTHONPATH=$PYTHONPATH:xxxxxx/tensorflow-models/research:xxxx/tensorflow-models/research/slim
  • 下载tensorflow源码和android ndk r16b

    1
    2
    3
    https://github.com/tensorflow/tensorflow
    cd tensorflow
    git checkout r1.10

    设置编译android demo需要的ndk
    进入tensorflow源码根目录,修改WORKSPACE增加如下行

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    android_sdk_repository(
    name = "androidsdk",
    api_level = 27,
    build_tools_version = "27.0.2",
    path = "/Users/xxxx/Library/Android/sdk",
    )

    # Android NDK r12b is recommended (higher may cause issues with Bazel)
    android_ndk_repository(
    name="androidndk",
    path="/Users/xxxx/Library/Android/sdk/android-ndk-r16b",
    api_level=21
    )

2.生成tflite兼容的pb graph

2.1) 设置变量

1
2
3
4
ROOT_PATH=xxxxx/tensorflow/pretrained_models
export CONFIG_FILE=${ROOT_PATH}/pipeline.config
export CHECKPOINT_PATH=${ROOT_PATH}/model.ckpt
export OUTPUT_DIR=/tmp/tflite

2.2) 根据pb、checkpoint、pipeline.config等生成frozen graph

1
python object_detection/export_tflite_ssd_graph.py --pipeline_config_path $CONFIG_FILE  --trained_checkpoint_prefix $CHECKPOINT_PATH --output_directory /tmp/tflite/ --add_postprocessing_op=true

3.通过TOCO获取优化后的模型

TOCO: TensorFlow Lite Optimizing Converter

3.1)如果想要整型[这块暂时没调通]

1
2
3
4
5
6
7
8
9
10
11
bazel run --config=opt tensorflow/contrib/lite/toco:toco -- \
--input_file=$OUTPUT_DIR/tflite_graph.pb \
--output_file=$OUTPUT_DIR/detect.tflite \
--input_shapes=1,300,300,3 \
--input_arrays=normalized_input_image_tensor \
--output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3' \
--inference_type=QUANTIZED_UINT8 \
--mean_values=128 \
--std_values=128 \
--change_concat_input_ranges=false \
--allow_custom_ops

3.2)如果想要浮点类型

1
2
3
4
5
6
7
8
bazel run --config=opt tensorflow/contrib/lite/toco:toco -- \
--input_file=$OUTPUT_DIR/tflite_graph.pb \
--output_file=$OUTPUT_DIR/detect.tflite \
--input_shapes=1,300,300,3 \
--input_arrays=normalized_input_image_tensor \
--output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3' \
--inference_type=FLOAT \
--allow_custom_ops

4. 集成到Android Studio工程中

4.1)更新模型和配置文件

cp /tmp/tflite/detect.tflite tensorflow/contrib/lite/examples/android/app/src/main/assets

编辑tensorflow/contrib/lite/examples/android/BUILD,增加新的detect.tflite和color_pen_label.txt

1
2
3
4
5
6
7
8
9
10
@@ -37,9 +37,10 @@ android_binary(
"@tflite_conv_actions_frozen//:conv_actions_frozen.tflite",
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:conv_actions_labels.txt",
"@tflite_mobilenet_ssd//:mobilenet_ssd.tflite",
- "@tflite_mobilenet_ssd_quant//:detect.tflite",
+ "//tensorflow/contrib/lite/examples/android/app/src/main/assets:detect.tflite",
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:box_priors.txt",
"//tensorflow/contrib/lite/examples/android/app/src/main/assets:coco_labels_list.txt",
+ "//tensorflow/contrib/lite/examples/android/app/src/main/assets:color_pen_label.txt",
],

新建color_pen_label.txt内容为

1
2
???
color-pen

拷贝到demo/asset目录:

cp color_pen_label.txt tensorflow/contrib/lite/examples/android/app/src/main/assets

如果是float的话,按如下修改源码
tensorflow/contrib/lite/examples/android/app/src/main/java/org/tensorflow/demo/DetectorActivity.java

1
2
3
4
5
6
7
8
9
@@ -50,9 +50,9 @@ public class DetectorActivity extends CameraActivity implements OnImageAvailable

// Configuration values for the prepackaged SSD model.
private static final int TF_OD_API_INPUT_SIZE = 300;
- private static final boolean TF_OD_API_IS_QUANTIZED = true;
+ private static final boolean TF_OD_API_IS_QUANTIZED = false;
private static final String TF_OD_API_MODEL_FILE = "detect.tflite";
- private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/coco_labels_list.txt";
+ private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/color_pen_label.txt";

如果是量化模型的话,按如下修改源码

1
2
3
4
5
6
7
@@ -50,9 +50,9 @@ public class DetectorActivity extends CameraActivity implements OnImageAvailable

// Configuration values for the prepackaged SSD model.
private static final int TF_OD_API_INPUT_SIZE = 300;
private static final String TF_OD_API_MODEL_FILE = "detect.tflite";
- private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/coco_labels_list.txt";
+ private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/color_pen_label.txt";

4.2)编译tflite_demo app

1
2
3
4
bazel build --cxxopt=--std=c++11 //tensorflow/contrib/lite/examples/android:tflite_demo

# arm64版本
bazel build -c opt --config=android_arm64 --cxxopt='--std=c++11' //tensorflow/contrib/lite/examples/android:tflite_demo

4.3)安装到Android设备

1
adb install -r bazel-bin/tensorflow/contrib/lite/examples/android/tflite_demo.apk

4.4)运行TFL Detect App